$$
F \in T A u t_{2} \quad F: x+y \mapsto \log e^{x} e^{y} \text { "such } F \text { in sol" is }
$$

$$
\Phi_{F}=\left(F^{12,3}\right)^{-1}\left(F^{1,2}\right)^{-1} F^{23} F^{1,23} \text { is in SAut } 3 k
$$

Satisfics $\quad \Phi^{123} \Phi^{1,23,4} \Phi^{234}=\Phi^{2,1,3, y} \Phi^{1,2,3 y} \quad$ (口)
In $t d w_{2}, \quad r=(y, 0) \quad t=(y, x)$

$$
\text { satisfits } 6 T \text { satisfics } 4 T
$$

$R=l^{r}$ satisfies $V B: R^{12} R^{13} R^{23}=R^{23} R^{1 / 3} R^{12}$
and also $R^{12,3}=R^{13} R^{23}$ \& $F^{23} R^{1,33}\left(F^{-23}\right)^{-1}=R^{12} K^{13}$
DeFClaim $T(F)=R F^{2,1} e^{-t / 2}$ is an involution on Sol; Solt: $=\{F: \tau(F)=F)\}$ is non-empty.
claim $\Phi_{r(F)}=\left(\Phi_{F}^{321}\right)^{-1}$; if $F \in S$ olt, then
$H^{2} x_{+} \quad e^{\left(t^{13}+t^{23}\right) / 2}=\Phi^{213} e^{t^{3} / 2}\left(\Phi^{231}\right)^{-1} e^{t^{23 / 2}} \Phi^{321}$
Hex - $e^{\left(t^{12}+t^{13}\right) / 2}=\left(\Phi^{132}\right)^{-1} e^{t^{3} / 2} \Phi^{312} e^{t^{12 / 2}} \Phi$

Challanges 1. Verify.
2. Understand. computations.

